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Preliminaries

Definition

A partition π is a non-increasing sequence of positive integers.
If the sum of these integers is n, then we write π ` n, or
|π| = n. Let p(n) denote the number of partitions of n.

The partitions π ` 4 are

(4) (3, 1)
(2, 2) (2, 1, 1)
(1, 1, 1, 1).

Thus, p(4) = 5.
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Preliminaries

Theorem (Stanley, Elder)

For each j ≥ 1 the number of j’s used in the partitions of n
equals the number of parts which occur at least j times in a
given partition of n, summed over all the partitions of n.

Again, consider n = 4.

(4) (3, 1)
(2, 2) (2, 1, 1)
(1, 1, 1, 1)

There are three 2’s, and three different occurences of 2 or more
repeated parts in a single partition.
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Obligatory Ramanujan Congruences Slide

Theorem (Ramanujan, Hardy; 1920)

For all n ≥ 0,

p(5n+ 4) ≡ 0 (mod 5)

p(7n+ 5) ≡ 0 (mod 7)

p(11n+ 6) ≡ 0 (mod 11).
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Preliminaries

Definition

The rank of π is equal to the largest part of π minus the
number of parts of π.

For example,
r((4, 4, 1)) = 4− 3 = 1.

Divvying the partitions π ` (5n+ 4) according to their rank
modulo 5 produces five sets of equal size. This technique also
proves the modulo 7 congruence, but fails for the modulo 11
congruence.
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Preliminaries

Definition

If a partition π does not contain any 1s, then the crank of π is
defined to be the largest part of π.

Otherwise, let w(π) denote the number of 1’s occurring in π,
and let µ(π) denote the number of parts of π which are larger
than w(π). In this case, the crank of π is defined to be

c(π) = µ(π)− w(π).

Payoff: The crank proves all three Ramanujan congruences.
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The Partition Case

Recall, the Frobenius symbol is a 2× k array which enumerates
the number of boxes to the right of the main diagonal of a
Young diagram, and then the number of boxes below the main
diagonal.

(5, 4, 3, 3)↔
(

4 2 0
3 2 1

)
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The Partition Case

Theorem (Andrews, Dastidar, M., 2021)

For each j ≥ 0 , the number of partitions of n with cranks > j
equals one half of the number of j’s occuring in the Frobenius
symbols for the partitions of n.

This is a particuarly surprising result, because the Frobenius
symbol is much more friendly to the rank funciton than the
crank.
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The Partition Case

Theorem (Andrews, Dastidar, M., 2021)

Let π be a partition of n with c(π) = k > 0. Then there is a
one-to-one correspondence between π and a set consisting of two
occurrences of each of the integers i with 0 ≤ i ≤ k − 1 among
all of the parts of the Frobenius symbols for the partitions of n.

Corollary

The sum of the side lengths of all the Durfee squares in the
partitions of n equals the sum of all the positive cranks in the
partitions of n. Further,

1

2
M2(n) = np(n).
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Lifting to Overpartitions

Definition

An overpartition is a non-increasing sequence of positive
integers, where the first occurrence of each part may be
overlined.

The overpartitions π ` 3 are

(3) (3) (1, 1, 1) (1, 1, 1)
(2, 1) (2, 1) (2, 1) (2, 1).

Overpartitions share many of the features that lead to the
partition result: Frobenius representations, ranks, and cranks.
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Lifting to Overpartitions

Definition

For k ≥ 1, the kth residual partition of π is a partition π′

consisting of 1/kth of each of the non-overlined parts of π that
are divisible by k. The kth residual crank of π is then defined to
be ck(π) = c(π′).

For example,

c1((4, 3, 2)) = c((4, 2)) = 4

c2((4, 3, 2)) = c((2, 1)) = 0

c3((4, 3, 2)) = c(∅) = 0

c4((4, 3, 2)) = c((1)) = −1

ck((4, 3, 2)) = c(∅) = 0, for k ≥ 5.
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Lifting to Overpartitions

Let k = 1. We consider the first residual crank in relation to the
first Frobenius representation of overpartitions.

Theorem (Corteel, Lovejoy; 2004)

There is a bijection between overpartitions π and generalized
Frobenius representations ν = (α, β)T where α is a partition
into distinct parts and β is an overpartition into nonnegative
parts such that |λ| = |ν|.

For example,

(3, 3, 3, 3, 3, 2)↔
(

3 2 1
4 4 3

)
.
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Sketch

Consider an overpartition as a vector partition (µ, λ), where µ
consists of all the overlined parts, and λ consists of all the
nonoverlined parts. Note that the first residual crank ignores all
parts of µ.

Tracking the parts of λ through Corteel and Lovejoy’s map
gives a simillar bijection as in the partition case. (Frobenius
symbols of ordinary partitions coincide with first Frobenius
representations with all parts of β overlined.)
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Future Study

For k = 2, we expect a simillar result to hold between the
second residual crank and the second Frobenius representation
of overpartitions. The map between overpartitions and second
Frobenius representations is somewhat opaque.

For k ≥ 3, we are not aware of other Frobenius representations
to attempt such a comparisson. However, this idea may well be
applicable to other crank-like functions defined on vector
partitions.
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Thank you!
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