A Stanley-Elder Type Relationship for Overpartitions

Special Session on Early Career Number Theory Research with Combinatorics, Modular Forms, and Basic Hypergeometric Series

Thomas Morrill¹

¹Trine University Slides available at tsmorrill.github.io.

2022 April 9

Morrill A Stanley-Elder Type Relationship

Overview

- Preliminaries
- The Partition Case
- Lifting to Overpartitions

A partition π is a non-increasing sequence of positive integers. If the sum of these integers is n, then we write $\pi \vdash n$, or $|\pi| = n$. Let p(n) denote the number of partitions of n.

The partitions $\pi \vdash 4$ are

$$\begin{array}{ll} (4) & (3,1) \\ (2,2) & (2,1,1) \\ (1,1,1,1). \end{array}$$

Thus, p(4) = 5.

Theorem (Stanley, Elder)

For each $j \ge 1$ the number of j's used in the partitions of n equals the number of parts which occur at least j times in a given partition of n, summed over all the partitions of n.

Again, consider n = 4.

$$\begin{array}{ll} (4) & (3,1) \\ (2,2) & (2,1,1) \\ (1,1,1,1) & \end{array}$$

There are three 2's, and three different occurences of 2 or more repeated parts in a single partition.

Obligatory Ramanujan Congruences Slide

Theorem (Ramanujan, Hardy; 1920)

For all $n \geq 0$,

$$p(5n+4) \equiv 0 \pmod{5}$$

$$p(7n+5) \equiv 0 \pmod{7}$$

$$p(11n+6) \equiv 0 \pmod{11}.$$

The rank of π is equal to the largest part of π minus the number of parts of π .

For example,

$$r((4,4,1)) = 4 - 3 = 1.$$

Divvying the partitions $\pi \vdash (5n + 4)$ according to their rank modulo 5 produces five sets of equal size. This technique also proves the modulo 7 congruence, but fails for the modulo 11 congruence.

If a partition π does not contain any 1s, then the *crank* of π is defined to be the largest part of π .

Otherwise, let $w(\pi)$ denote the number of 1's occurring in π , and let $\mu(\pi)$ denote the number of parts of π which are larger than $w(\pi)$. In this case, the crank of π is defined to be

$$c(\pi) = \mu(\pi) - w(\pi).$$

Payoff: The crank proves all three Ramanujan congruences.

Recall, the *Frobenius symbol* is a $2 \times k$ array which enumerates the number of boxes to the right of the main diagonal of a Young diagram, and then the number of boxes below the main diagonal.

$$(5,4,3,3) \leftrightarrow \begin{pmatrix} 4 & 2 & 0 \\ 3 & 2 & 1 \end{pmatrix}$$

Theorem (Andrews, Dastidar, M., 2021)

For each $j \ge 0$, the number of partitions of n with cranks > j equals one half of the number of j's occuring in the Frobenius symbols for the partitions of n.

This is a particuarly surprising result, because the Frobenius symbol is much more friendly to the rank funciton than the crank.

Theorem (Andrews, Dastidar, M., 2021)

Let π be a partition of n with $c(\pi) = k > 0$. Then there is a one-to-one correspondence between π and a set consisting of two occurrences of each of the integers i with $0 \le i \le k - 1$ among all of the parts of the Frobenius symbols for the partitions of n.

Corollary

The sum of the side lengths of all the Durfee squares in the partitions of n equals the sum of all the positive cranks in the partitions of n. Further,

$$\frac{1}{2}M_2(n) = np(n).$$

An *overpartition* is a non-increasing sequence of positive integers, where the first occurrence of each part may be overlined.

The overpartitions $\pi \vdash 3$ are

Overpartitions share many of the features that lead to the partition result: Frobenius representations, ranks, and cranks.

Lifting to Overpartitions

Definition

For $k \geq 1$, the *k*th residual partition of π is a partition π' consisting of 1/kth of each of the non-overlined parts of π that are divisible by *k*. The *k*th *residual crank* of π is then defined to be $c_k(\pi) = c(\pi')$.

For example,

$$c_1((4,\overline{3},2)) = c((4,2)) = 4$$

$$c_2((4,\overline{3},2)) = c((2,1)) = 0$$

$$c_3((4,\overline{3},2)) = c(\emptyset) = 0$$

$$c_4((4,\overline{3},2)) = c((1)) = -1$$

$$c_k((4,\overline{3},2)) = c(\emptyset) = 0, \text{ for } k \ge 5$$

Let k = 1. We consider the first residual crank in relation to the first Frobenius representation of overpartitions.

Theorem (Corteel, Lovejoy; 2004)

There is a bijection between overpartitions π and generalized Frobenius representations $\nu = (\alpha, \beta)^T$ where α is a partition into distinct parts and β is an overpartition into nonnegative parts such that $|\lambda| = |\nu|$.

For example,

$$(3,3,3,3,\overline{3},\overline{2}) \leftrightarrow \begin{pmatrix} 3 & 2 & 1 \\ \overline{4} & 4 & \overline{3} \end{pmatrix}.$$

Consider an overpartition as a vector partition (μ, λ) , where μ consists of all the overlined parts, and λ consists of all the nonoverlined parts. Note that the first residual crank ignores all parts of μ .

Tracking the parts of λ through Corteel and Lovejoy's map gives a simillar bijection as in the partition case. (Frobenius symbols of ordinary partitions coincide with first Frobenius representations with all parts of β overlined.) For k = 2, we expect a similar result to hold between the second residual crank and the second Frobenius representation of overpartitions. The map between overpartitions and second Frobenius representations is somewhat opaque.

For $k \geq 3$, we are not aware of other Frobenius representations to attempt such a comparison. However, this idea may well be applicable to other crank-like functions defined on vector partitions.

Thank you!

Morrill A Stanley-Elder Type Relationship